problem of portfolio selection - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

problem of portfolio selection - перевод на русский

PROCEDURE IN MACHINE LEARNING AND STATISTICS
Input selection; Feature selection problem; Variable selection; Feature subset selection
  • Embedded method for Feature selection
  • Wrapper Method for Feature selection
  • Filter Method for feature selection

problem of portfolio selection      
задача выбора портфеля ценных бумаг
investment portfolio         
COLLECTION OF FINANCIAL INVESTMENTS
Investment portfolio; Financial portfolios; Financial portfolio; Finance Portfolio; Business Portfolio; Stock portfolio
investment portfolio портфель ценных бумаг (банка и т. п.)
investment portfolio         
COLLECTION OF FINANCIAL INVESTMENTS
Investment portfolio; Financial portfolios; Financial portfolio; Finance Portfolio; Business Portfolio; Stock portfolio

общая лексика

портфель ценных бумаг (банка и т. п.)

Определение

грип
ГРИП, ГРИПП, гриппа, ·муж. (·франц. grippe) (мед.). Инфекционная болезнь - катарральное воспаление дыхательных путей, сопровождаемое лихорадочным состоянием; то же, что инфлуэнца
.

Википедия

Feature selection

In machine learning and statistics, feature selection, also known as variable selection, attribute selection or variable subset selection, is the process of selecting a subset of relevant features (variables, predictors) for use in model construction. Feature selection techniques are used for several reasons:

  • simplification of models to make them easier to interpret by researchers/users,
  • shorter training times,
  • to avoid the curse of dimensionality,
  • improve data's compatibility with a learning model class,
  • encode inherent symmetries present in the input space.

The central premise when using a feature selection technique is that the data contains some features that are either redundant or irrelevant, and can thus be removed without incurring much loss of information. Redundant and irrelevant are two distinct notions, since one relevant feature may be redundant in the presence of another relevant feature with which it is strongly correlated.

Feature selection techniques should be distinguished from feature extraction. Feature extraction creates new features from functions of the original features, whereas feature selection returns a subset of the features. Feature selection techniques are often used in domains where there are many features and comparatively few samples (or data points). Archetypal cases for the application of feature selection include the analysis of written texts and DNA microarray data, where there are many thousands of features, and a few tens to hundreds of samples.

Как переводится problem of portfolio selection на Русский язык